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1 Introduction
A detailed model of diffraction of plane and Gaussian
beams on plane uniform phase Bragg gratings based on a
Kogelnik’s theory of coupled waves is presented. The
model describes reflecting gratings (Bragg mirrors) with
arbitrary orientation in a plane-parallel plate having no mate-
rial losses. It takes into account spectral width and angular
divergence of laser beams. The results of modeling are
compared with experimental data for Bragg mirrors in a
photo-thermo-refractive (PTR) glass.

Wide applications of volume Bragg gratings (VBG) in
optics and photonics require comprehensive practical knowl-
edge of such optical elements. In spite of Kogelnik’s theory
of coupled waves1 developed about 40 years ago, no reduc-
tion to practical formulae enabling precise design of VBGs
has been provided up to today. VBGs in the case of a mono-
chromatic plane wave were also treated in detail in Ref. 2,
which considers Fresnel reflections and the added effects of
composite VBGs such as using two VBGs to form a Fabry-
Perot cavity, but also does not address a reduction to practical
formulae for designers.

A detailed modeling of the diffraction of plane monochro-
matic waves along with divergent and polychromatic beams

on transmitting volume gratings on the basis of Kogelnik’s
theory1 was published in Ref. 3. The effect of finite diver-
gence on thick grating performance has been previously
described in Refs. 4 and 5. This paper extends the results
of the previous works to a modeling of the diffraction on
reflecting volume gratings (Bragg mirrors) describing simul-
taneously divergent and polychromatic beams where
Kogelnik’s theory is reduced to practical formulae which
are necessary for design of diffractive optical elements
based on VBGs.

A uniform phase grating is a structure produced by period-
ical distribution of the refractive index modulation inside the
volume of a photosensitive medium, as shown in Fig. 1. Each
structure recorded inside a slab with plane-parallel surfaces
could be considered as either transmitting or reflecting
Bragg grating depending on the orientation of a readout
beam in regard to the front surface. Dotted and dashed arrows
in Fig. 1 correspond to a beam tracing for transmitting and
reflecting grating geometry; solid arrows are thewave vectors
of beams and the grating vectors. As was noted in Ref. 3, uni-
form sinusoidal VBGs could be entirely described by the fol-
lowing set of parameters: the grating thickness t, the average
refractive index of a medium nav, the amplitude of refractive
indexmodulationδn, thegratingperiodΛ (or spatial frequency
f ¼ 1∕Λ), and the grating inclination angleφbetween the nor-
mal to the grating front surface Nf and the grating vectorKG.0091-3286/2012/$25.00 © 2012 SPIE
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The grating vector KG is normal to the planes of a con-
stant refractive index, has a module jKGj ¼ 2πf , and is direc-
ted inside a medium.1 It is important to emphasize that a
sinusoidal volume grating itself has a double degeneration
of grating vector directions due to its symmetry. Therefore,
the definition of a grating vector in a diffractive optical ele-
ment is based on its orientation with respect to the front sur-
face of the element, though the process of diffraction does
not depend on what surface was crossed by an incident
beam. This feature of sinusoidal gratings results in different
orientation of grating vector depending on what surface of a
photosensitive plate was chosen as a front one. For example,

according to the definition given above (introduced by
Kogelnik1), the volume grating depicted in Fig. 1 is a trans-
mitting grating for short-wavelength radiation (large wave
vector) which crosses the left vertical surface (front surface
for this beam). The vector of this grating for this beam is
directed down to the bottom of this figure. The same grating
is a reflecting one for long-wavelength radiation (small wave
vector) which crosses the bottom surface (front surface for
this beam). The vector of this grating for this beam is directed
to the top of the figure. An inclination angle of grating φ is
the angle between the normal to the front surface Nf and the
grating vectorKG. It is positive in a counter-clockwise direc-
tion and can vary from −π∕2 toþπ∕2. Therefore, a transmit-
ting grating excited through the left vertical side has a
negative inclination. The same grating excited through the
bottom horizontal side is a reflective one and has a positive
inclination.

Following the approach proposed in Refs. 1 and 3, we use
the incident Bragg angle in a medium θ�m, which is the angle
between a grating vector KG and a wave vector Kim of an
incident beam inside the medium. Let us note again that
incident Bragg angle θ�m differs from a conventional
Bragg angle in the media θm, and the relationship between
these parameters is sin θm ¼ j cos θ�mj. While there are two
orders of Bragg diffraction in an infinite sinusoidal grating,1

there are four possible orders of Bragg diffraction in
sinusoidal grating recorded in a plane parallel plate.3 The
positive orders of Bragg diffraction are for incident
Bragg angle 0 < θ�m < þπ, while the negative orders are
for −π < θ�m < 0. The forward orders of Bragg diffraction
are for a module of an incident Bragg angle jθ�mj < π∕2,
while the backward orders are for jθ�mj > π∕2. For transmit-
ting geometry (dotted arrows) shown in Fig. 1, an incident
Bragg angle is positive and jθ�mj > π∕2. This means that this
is a positive backward Bragg order. For the same grating that
is used in a reflecting geometry (dashed arrows) for longer
wavelengths, an incident Bragg angle for a beam coming

Fig. 1 Propagation of optical rays through a volume Bragg grating
in transmitting (dotted lines) and reflecting (dashed lines) geometry.
Nf and Nf;ex ¼ normal to the front surface for incident (I i ) and
diffracted (Id ) beams; Kim;Kdm ¼ wave vectors of incident and
diffracted beams inside the grating medium; KG ¼ Grating vector;
φ ¼ grating inclination;θi ; θd ¼ incident and diffraction angles; θ�m ¼
incident Bragg angle.

Fig. 2 Possible orders of Bragg diffraction for reflecting gratings with different angles of inclination. I i , I t , and Id ¼ incident, transmitted, and
diffracted beams; KG ¼ grating vector; φ ¼ grating inclination; θi , θt , and θd ¼ angles of incidence, transmission, and diffraction; θ�m ¼
incident Bragg angle.
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from approximately the same direction is negative and
jθ�mj < π∕2; this is a negative forward Bragg order. It is
important to note that for forward orders of diffraction,
the wave vector of a diffracted beam Kdm is the difference
between the wave vector of an incident beam Kim and the
grating vector KG, while for backward orders the wave vec-
tor of a diffracted beam Kdm is the sum of the wave vector of
an incident beam Kim and the grating vector Kd.

3

Figure 2 shows the Bragg diffraction for reflecting VBGs
(Bragg mirrors) with different inclination angles φ. One can
see that scanning of the incident angle results in switching
between plus and minus orders only. This is the opposite
of transmitting gratings, where scanning of an incident
angle results in switching between forward and backward
orders.3 Similar to conventional mirrors, a positive sign of
the incident angle corresponds to a negative sign of the
exit diffraction angles for reflecting VBGs. Also, a change
of the sign of the Bragg mirror inclination does not change
the sign of a Bragg order.

Regardless of the VBG geometry, the basic relationship
between Bragg wavelength λ0 and incident Bragg angle
θ�m is determined by the Bragg condition as

λ0
navj cos θ�mj

¼ 2Λ. (1)

Contrary to transmitting gratings, where jθ�mj is close to π∕2
and the wavelength of reading radiation is significantly less
in comparison to the grating period, for reflecting gratings θ�m
is close to zero and the wavelength of reading radiation is
comparable to the grating period. For each grating period,
there is the maximum wavelength λmax

0 , which corresponds
to normal beam incidence on a reflecting Bragg grating, that
is, at θ�m ¼ 0,

λmax
0 ¼ 2navΛ. (2)

Radiation with wavelength exceeding λmax
0 cannot be dif-

fracted by this particular grating at any conditions of excita-
tion. Radiation with shorter wavelengths can be reflected by
a Bragg mirror at larger angles of incidence.

2 Diffraction of Plane Monochromatic Waves on a
Transmitting Bragg Grating

Diffraction efficiency (DE) of a reflecting Bragg grating that
has no material losses is described by the following formula
if ξ and S are considered to be real positive numbers and ξ >
S (Ref. 1). This equation also appears in the theory for fiber
Bragg gratings.6,7

η ¼ sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − S2

p
ξ2∕S2 − cos2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − S2

p . (3)

Here S and ξ are the same phase incursion, also called grating
strength, at Bragg condition and dephasing parameter at cer-
tain detuning from Bragg condition as they were described in
Ref. 3 for transmitting gratings. However, there is a distinc-
tive feature between transmitting and reflecting gratings: the
inclination factor,Fφ ¼ ½− cosðφ − θ�mÞ cosðφþ θ�mÞ�1∕2, is a
real number for transmitting gratings and an imaginary num-
ber for reflecting ones because the incident Bragg angle θ�m is
close to π∕2 and to zero, respectively. Therefore, in order to

maintain the phase incursion S as a real-valued parameter, it
should be redefined for reflecting VBGs as:

S ¼ iπtδn
λ0Fφ

. (4)

For unslanted reflecting grating φ ¼ 0, and the phase incur-
sion S becomes:

S0 ¼
πtδn

λ0j cos θ�mj
¼ 2πnavtδn

λ20f
. (5)

Similarly, when small angular deviations Δθm from an inci-
dent Bragg angle θ�m and/or small deviations Δλ from central
wavelength λ0 occurred, dephasing parameter ξ for reflecting
gratings should be redefined for keeping it positive by chan-
ging of the sign in Eq. (6).3 The resulting dephasing para-
meter becomes:

ξ ¼ πf t cosðθ�mÞ
cosðφ − θ�mÞ − f λ0

nav
cosðφÞ

�
Δθm

sinðθ�mÞ
cosðθ�mÞ

þ Δθ2m
2

þ Δλ
λ0

�
.

(6)

Kogelnik’s dephasing parameter, −Δθm sinðθ�mÞ þ f
2nav

Δλ,
is the result of a first-order Taylor series approximation of
cosðθ�m þ ΔθmÞ þ f

2nav
ðλ0 þ ΔλÞ. However, this approxi-

mation will not be valid if the Bragg angle is set to near
normal incidence, as sinðθ�mÞ ≈ 0 in this case. Therefore,
one has to use the second term in the approximation.

Let us assume that for unslanted (φ ¼ 0) reflecting VBGs
the incident beam corresponds to the angular Bragg condi-
tion (i.e., Δθm ¼ 0), but there is some spectral deviation Δλ
from exact Bragg wavelength λ0. In this case, one can write a
formula for dephasing parameter ξ from Eq. (6) by consider-
ing the Bragg condition [Eq. (1)]:

ξ0 ¼
2πnavtΔλ

λ20
j cos θ�mj ¼

πf tΔλ
λ0

. (7)

Spectral selectivity of such unslanted grating could be
derived by substitution of Eqs. (5) and (7) to Eq. (3)

Fig. 3 Dependence of diffraction efficiency of a reflecting VBG on
deviation from resonant wavelengthλ0 ¼ 1085 nm. Normal incidence,
thickness 1 mm, average refractive index nav ¼ 1.4867. Refractive
index modulation, ppm: 1 ¼ 200, 2 ¼ 500, 3 ¼ 1000.
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when the mismatching from the exact Bragg wavelength λ0
of Δλ occurs. The selectivity could be described in the terms
of Bragg grating parameters:

η ¼
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πnavtδn

λ2
0
f

�
2
−
�
πf tΔλ
λ0

�
2

r

�
λ0f 2Δλ
2navδn

�
2
− cos2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πnavtδn

λ2
0
f

�
2
−
�
πf tΔλ
λ0

�
2

r . (8)

Figure 3 shows the dependence of diffraction efficiency
(reflection coefficient) on spectral detuning from Bragg
wavelength for 1-mm-thick reflecting Bragg grating for
three different values of refractive index modulation δn. If
δn is decreasing, the spectral selectivity is narrowing
and the maximal DE decreases. A reflecting VBG at
Bragg condition (Δθm ¼ Δλ ¼ 0) has a dephasing parameter
ξ ¼ 0, and the maximal DE can be simplified from Eq. (3):

η0 ¼ tanh2 S0 ¼ tanh2
πtδn

λ0j cos θ�mj
. (9)

Following the hyperbolic tangent function, diffraction
efficiency η0 asymptotically approaches the 100% value
by increasing of grating thickness and/or refractive index
modulation.

Let us note that if the desired diffraction efficiency η0
could be predetermined at a certain level, it would serve
as one of the basic parameters for a design of a reflecting
VBG. To achieve this specified diffraction efficiency, inter-
relationships between thickness, refractive index modula-
tion, and incident Bragg angle θ�m could be derived from
Eq. (9):

δn ¼ λ0j cos θ�mjatanh ffiffiffiffiffi
η0

p
πt0

. (10)

Figure 4(a) illustrates this interrelation [Eq. (10)] for four DE
values: 90%, which corresponds to 10 dB of attenuation of a
transmitted beam; 99% (20 dB); 99.9% (30 dB); and 99.99%
(40 dB), at λ0 ¼ 1085 nm for θ�m ¼ 0 (normal incidence). It
can be noted that refractive index modulation δn becomes
less than 1000 ppm for securing the diffraction efficiency
level of η0 ¼ 99% (20 dB attenuation) only when a VBG
thickness is more than 1 mm. Therefore, reflecting VBGs
should be thick enough to achieve efficient reflection at rela-
tively low values of refractive index modulation.

One can conclude that unslanted reflecting VBGs can be
fully described by a combination of any two out of three grat-
ing parameters: thickness, refractive index modulation, and
diffraction efficiency that should be predetermined for a par-
ticular incident Bragg angle θ�m at a wavelength λ0.

To determine spectral selectivity, Eq. (3) should be
equaled to zero. Because ξ ≠ S (otherwise we have a func-
tion singularity at this point), diffraction efficiency reaches
its zero value at multiple points:

ðξ2 − S2Þ1∕2 ¼ jπ; where j ¼ 1; 2; : : : ; n; : : : . (11)

Generally, spectral selectivity at a half width at first zero
(HWFZ) level, δλHWFZ, is defined by substitution of
Eqs. (4) and (6) into Eq. (11) at j ¼ 1. However, the general
result can be simplified for unslanted reflecting VBGs
with maximal DE η0 by substitution of S0 and ξ0 from
Eqs. (7) and (9) to Eq. (11):

δλHWFZ ¼
λ20

�
ðatanh ffiffiffiffiffi

η0
p Þ2 þ π2

�
1∕2

2πnavtj cos θ�mj

¼
λ0

�
ðatanh ffiffiffiffiffi

η0
p Þ2 þ π2

�
1∕2

πf t
. (12)

Assessment of typical values of spectral selectivity δλHWFZ

for η0 ¼ 99.0%, λ0 ¼ 1085 nm, nav ¼ 1.485, and θ�m ¼ 0
gives the following formula:

δλHWFZ ½nm� ≅ 0.55

t½mm� . (13)

It is clear that this simple expression can be easily derived for
any particular wavelength. It is necessary to point out that
refractive index modulation δn has to follow any changing
of thickness for securing the diffraction efficiency value
of η0. Figure 4(b) illustrates the interrelation between spec-
tral selectivity δλHWFZ and grating thickness t that is neces-
sary to achieve for different diffraction efficiency values: the

Fig. 4 Interrelationship between grating parameters and spectral
selectivity for predetermined diffraction efficiency of VBG: 1 ¼ 90%,
2 ¼ 99%, 3 ¼ 99.9%, 4 ¼ 99.99%. Normal incidence, λ0 ¼ 1085 nm,
nav ¼ 1.4867. (a) Refractive index modulation versus thickness.
(b) Spectral selectivity at HWFZ versus thickness.
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thicker the grating, the narrower the spectral selectivity.
One can see that a spectral selectivity δλHWFZ ∼ 0.1 nm
could be achieved for a 5.5-mm-thick VBG, and δλHWFZ ∼
0.5 nm corresponds to a 1.1-mm-thick grating at η0 ¼ 99%.
The coefficient in Eq. (13) slightly increases for higher DE
values.

Let us derive the basic interrelation between angular and
spectral parameters for a reflecting VBG. Similarly to the
procedure described in Refs. 1 and 2 for transmitting
Bragg gratings, we suppose that small angular deviation
Δθ from θ�m inside the grating medium leads to correspond-
ing change Δλ in resonant wavelength λ0. In this case,
Bragg condition, Eq. (1), can be expressed in its differential
form:

λ0 − Δλ
λ0

¼
���� cosðθ

�
m − ΔθÞ

cos θ�m

����. (14)

Because deviation Δθ from θ�m is small, cos Δθ ¼
1 − 2 sin2 Δθ

2
≈ 1 − Δθ2

2
, and Eq. (14) becomes

Δθ2 − 2 tan θ�mΔθ −
2Δλ
λ0

¼ 0. (15)

Equation (15) has two solutions:

Δθ1;2 ¼ �
�
tan2 θ�m þ 2Δλ

λ0

�
1∕2

þ tan θ�m. (16)

If one would like to consider angular selectivity between the
first zeros of the DE, it is necessary to substitute δλHWFZ from
Eq. (12) to Eq. (16). However, Eq. (15) has two different
solutions and we have to introduce two different definitions
for angular selectivity. Figure 5(a) shows the simulation
results for angular selectivity of a 1-mm-thick VBG with
1500 ppm refractive index modulation and an incident
Bragg angle of 2 deg at 1085 nm. The first definition is
for full (wider) angular selectivity at full width at zero
(FWZ) level, δθFWZ

m , i.e., for the distance between two
first zeros in angular selectivity as they are determined by
both solutions of Eq. (15):

δθFWZ
m ¼ Δθ2 − Δθ1 ¼ 2

�
tan2 θ�m þ 2δλHWFZ

λ0

�
1∕2

. (17)

Full angular selectivity δθFWZ
m of reflecting VBGs with

predetermined DE η0 and incident Bragg angle θ�m could
be written in the following form by substitution of the spec-
tral selectivity value from Eq. (12):

δθFWZ
m ¼ 2

2
64tan2 θ�m þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðatanh ffiffiffiffiffi

η0
p Þ2 þ π2

q
πf t

3
75
1∕2

. (18)

Let us note that full angular selectivity δθFWZ
m should be the

primary consideration when incident Bragg angles θ�m are
small enough. In this case, an overlapping of the two differ-
ent selectivity curves has occurred due to their proximity, and
a divergent incident beam can interact with both of them.
Angular selectivity δθFWZ

m can be affected by changing of
refractive index modulation, especially for overdeveloped
VBGs. Figure 5(b) shows this phenomenon for 1-mm-
thick grating at θ�m ¼ 2° incident Bragg angle. One can
see that slight overall widening of δθFWZ

m is accompanied
with dramatically changing of angular selectivity shape.
The shape is changing from total overlapping of diffraction
peaks at more than 99.99% diffraction efficiency (which cor-
responds to refractive index modulation δn ¼ 2000 ppm) to
partial peak separating at η0 ≈ 99% (δn ¼ 1500 ppm) and
their full dividing at η0 ≈ 99% (δn ¼ 1000 ppm). This pecu-
liarity of reflecting VBGs should be considered for δθFWZ

m
assessment when gratings’ DE is near the 100% diffraction
efficiency limit.

The second definition of VBG angular selectivity is for
the distance between the Bragg angle and the first zero clo-
sest to it [Fig. 5(a)]. Let us call this reduced angular selec-
tivity the HWFZ, δθHWFZ

m ; this is similar to the definition for
transmitting VBGs introduced in Ref. 3. The HWFZ angular
selectivity considers the negative solution of Eq. (15) and
assumes that it has more universal nature and can be used
for reflecting Bragg gratings with any diffraction efficiency
and/or incident Bragg angle θ�m, especially when the
selectivity curves corresponding two different diffraction
orders do not overlap. The analytical formula for the
HWFZ selectivity is

Fig. 5 Angular selectivity of 1-mm-thick reflecting VBG at θ�m ¼ 2°.
λ0 ¼ 1085 nm, nav ¼ 1.4867. (a) Definition of angular selectivity at
HWFZ (solid arrow) and FWZ (dashed arrow) levels. (b) Dependence
of angular selectivity shape on refractive index modulation: 1 ¼
2000 ppm (solid line), 2 ¼ 1500 ppm (dotted line), 3 ¼ 1000 ppm
(dashed line).
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δθHWFZ
m ¼ jΔθ1j ¼

�
tan2 θ�m þ 2δλHWFZ

λ0

�
1∕2

− tan θ�m.

(19)

For unslanted gratings θ�m ¼ 0, and the interrelation between
both definitions of angular selectivity can be significantly
simplified:

δθFWZ
m ¼ 2δθHWFZ

m ¼
�
8δλHWFZ

λ0

�
1∕2

. (20)

Because there are two different definitions of Bragg grating
angular selectivity, we should determine the applicability
range for both definitions. Let us estimate at what incident
Bragg angle θ�m one should consider the FWZ angular selec-
tivity rather than the doubled HWFZ value. This problem is
very close to the problem of separation of two functions with
two maxima located near each other. Historically, three main
criteria for such separation were developed by Lord Rayleigh
(1879), C. M. Sparrow (1916), and W. V. Houston (1926).
The Rayleigh criterion states that the separation arises when
the peak of one function falls on the first zero point of the
other function (so-called null first derivative criterion); the
Sparrow criterion defines separation as when the saddle
point of the summed function first develops (so-called
null second derivative criterion); the Houston criterion states
that the intersection of two identical functions at their half
maximum level is a suitable definition for their effective
separation.
Let us apply the classical Rayleigh criterion, because the
Sparrow criterion is too strict and Houston’s does not work
well for functions which have varying core to wing ratios.8

Let us call the incident Bragg angle that defines the
fulfillment of Rayleigh’s criterion as the threshold inci-
dent Bragg angle θ0. To determine it, the following proce-
dure should be applied. Actually, θ0m is the angle inside
the VBG medium at which full FWZ angular selectivity
is three times wider than HWFZ selectivity: δθFWZ

m ¼
3δθHWFZ

m . Combining of Eqs. (18) and (19) together with
Eq. (12) gives a result

tan2 θ0 ¼
δλHWFZ

4λ0
¼

λ0

�
ða tanh

ffiffiffiffiffi
η0

p Þ2 þ π2
�
1∕2

8πnavtj cos θ0j
. (21)

One can easily calculate the θ0 angle as an angle outside
the VBG (i.e., in air). As an example, it is about 1 deg
for t ¼ 1 mm and η0 ¼ 99.9% for λ0 ¼ 1085 nm. The
dependence of the threshold angle in air on VBG thickness
is shown in Fig. 6. The thinner the grating, the bigger the
threshold angle is. However, differences in diffraction effi-
ciency of relatively strong reflecting VBGs have almost
no influence on the shape of this curve and the values of
threshold angles.

Hence, at θ�m < θ0 one should define the angular selectiv-
ity of reflecting VBG as its FWZ value, δθFWZ

m ; otherwise, a
doubled value of the HWFZ selectivity, δθHWFZ

m , should be
taken into consideration at θ�m > θ0.

Figure 7 shows the dependence of angular selectivity on
VBG thickness at different incident angles for a 99% effi-
cient grating. As one can see, the thicker the grating (still
in the assumption that all gratings are 99% efficient by
respective choosing of their refractive index modulations),
the wider the angular selectivity is. At normal incidence
(θ�m ¼ 0), angular selectivity is 20 mrad for 10-mm-thick,
28 mrad for 5-mm-thick, and 65 mrad for 1-mm-thick
gratings with a 1085 nm resonant wavelength. When inci-
dent angles are small (θ�m < θ0), angular selectivity is slightly
wider due to the appearance of two separated diffraction
maxima and their partial overlapping. The relative amount
of this widening is higher for thicker gratings. In these
conditions, reflecting VBGs work well for spectral narrow-
ing and mode-locking of diode lasers,9,10 as a coupling ele-
ment in laser resonators.11,12

Due to separation of two maxima of angular selectivity
according to Rayleigh criterion at θ�m ¼ θ0, the FWZ defini-
tion of angular selectivity of reflecting VBG should be
replaced by its HWFZ definition. Figure 7 shows the corre-
sponding drop in VBG selectivity at this point that was deter-
mined from Eq. (21). Then, the angular selectivity
dramatically narrows with increasing of incident angle at
θ�m > θ0; however, even at high angles of incidence angular
selectivity of reflecting VBGs is still much wider in compar-
ison with typical transmitting VBGs. Possible applications of
VBGs in non-retroreflecting condition are coherent and
spectral beam combining, deflecting, splitting, and attenuat-
ing of laser beams, etc.13–15

Hence, despite its spectral selectivity being unambigu-
ously specified, the angular selectivity of a reflecting

Fig. 6 Dependence of threshold incident angle in air on thickness of
reflecting VBG with 99.9% diffraction efficiency at resonant wave-
length of λ0 ¼ 1085 nm.

Fig. 7 Angular selectivity of reflecting VBG with 99% diffraction effi-
ciency at wavelength λ0 ¼ 1085 nm versus incident Bragg angle in
the medium at different grating thickness, mm: 1 ¼ 0.5; 2 ¼ 1;
3 ¼ 3; 4 ¼ 5; 5 ¼ 10.

Optical Engineering 058001-6 May 2012/Vol. 51(5)

Ciapurin et al.: Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal : : :



Bragg grating has two different definitions due to partial (or
full) overlapping of positive and negative orders of Bragg
diffraction. This phenomenon is inherent to reflect-
ing Bragg gratings and it could be used for design of
high-selective spectral filters with relatively wide angular
selectivity.

3 Diffraction of Gaussian Beams by Reflecting
VBGs

3.1 Polychromatic Planar Waves

Similarly to diffraction of Gaussian beams on transmitting
Bragg gratings described in Ref. 1, we will consider the
Bragg diffraction by comparing of grating spectral selectivity
with the beam spectrum:

G1ðΔλ;wÞ ¼ e
−2
�Δλ − λ0

w

�2

; (22)

where parameter w is the half width at e−2 of the maximum
(HWe−2M) spectral width and λ0 is a central wavelength of a

beam emission. In this case, grating diffraction efficiency
spectrum could be calculated from a convolution of the grat-
ing DE for monochromatic wave, Eq. (8), with the Gaussian
spectral distribution, Eq. (22). The convolution is normalized
with the integral of the Gaussian bandwidth profile. This
gives us the adjusted value of diffraction efficiency ηλðwÞ
as a function of wavelength.

ηλðΔλ;wÞ ¼
½η � G1�ðΔλÞR
G1ðΔλ;wÞdΔλ

¼
R
ηðλcÞG1ðΔλ − λcÞdλcR

G1ðΔλ;wÞdΔλ
.

(23)

Results of numerical calculations of Bragg diffraction on
reflecting gratings are shown in Fig. 8. Figure 8(a) shows
how different polychromatic beams diffract on a 1.1-mm-
thick grating which has 99% diffraction efficiency at normal
beam incidence. According to Eq. (12), this VBG has 0.5 nm
of HWFZ spectral selectivity. One can see that diffraction
efficiency drops down as the beam spectrum widens; this
grating has diffraction efficiency of about 60% when
w ¼ 2δλHWFZ. In comparison with the same dependence
of spectral selectivity for transmitting gratings described
in Ref. 1, when 60% DE occurs at w ¼ δλHWFZ, one can con-
clude that spectral width of incident beams is half as restric-
tive of a parameter for reflecting VBGs in comparison with
transmitting ones. Also, the side lobes in the spectral selec-
tivity curves begin to disappear when the beam spectral
width is approximately half the grating spectral selectivity
(2w ≥ δλHWFZ); total flattening of the DE curve occurs
when these values become equal to each other and for further
increasing of the beam spectral linewidth (w ≥ δλHWFZ).

Figure 8(b) shows the dependence of peak diffraction effi-
ciency ηλðΔλ ¼ 0;wÞon the beam spectral bandwidth w for a
set of VBGs with different spectral selectivity. These gratings
have thickness of 10.9, 5.5, 1.1, and 0.55 mm, and all are
99% efficient for monochromatic wave. Their HWFZ spec-
tral selectivity is determined from Eq. (13) as 0.05, 0.1, 0.5,
and 1.0 nm, respectively. One can see that 99% efficient
reflecting VBGs exhibit losses of about 10% for beams hav-
ing a spectral width equal to the spectral selectivity of a cor-
responding grating. It is important to note that a reflecting
VBG has fewer losses in comparison with a transmitting
VBG having the same spectral selectivity when a beam band-
width is equal to the spectral selectivity of the grating.3 For
reflecting VBGs, decreasing DE from 99% to 98% occurs
when the beam width, w, becomes approximately half the
grating’s spectral selectivity. This parameter for 1% effi-
ciency decreasing ratio is about four times less restrictive
in comparison with the same parameter for transmitting
VBG as it was determined in Ref. 3.

It is important to note that the general shape of the curves
showed in Fig. 8 does not change when the beam incidence is
not normal (i.e., incident Bragg angle θ�m ≠ 0) when the
beam wavelength obeys the relation λ0 ¼ λmax

0 j cos θ�mj.
Thus, one can use the criterion described above for the deter-
mination of diffraction losses resulting from spectral widen-
ing of diffracted beams for all values of incident Bragg
angles θ�m

Fig. 8 Spectral selectivity of 99% efficient reflecting VBG for poly-
chromatic plane waves at normal incidence. The calculated VBG is
1.1 mm thick with approximately 1000 ppm refractive index modula-
tion. (a) Dependence of diffraction efficiency on deviation from Bragg
wavelength. Spectral width of a beam (HWe−2M), nm: 1 ¼ 0.05,
2 ¼ 0.25, 3 ¼ 0.5, 4 ¼ 1.0; grating spectral selectivity (HWFZ) is
0.5 nm. (b) Dependence of grating DE on spectral width of the
beam. Spectral selectivity of gratings (HWFZ), nm: 1 ¼ 0.05,
2 ¼ 0.1, 3 ¼ 0.5, 4 ¼ 1.0; shown by dotted arrows. Dotted line corre-
sponds to diffraction efficiency for a beam with spectral width which is
equal to the grating selectivity.
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3.2 Divergent Monochromatic Beams

Similar to the description for transmitting VBGs in Ref. 3,
monochromatic beams that have a certain divergence could
be approximated by a Gaussian function with HWe−2M
divergence b:

G2ðΔθm; bÞ ¼ e
−2
�Δθm − θ�m

b

�
. (24)

Diffraction of divergent beams on reflecting VBG could
be described by a convolution of the grating diffraction effi-
ciency, ηðΔθÞ, given by Eqs. (6) and (3), and the angular
distribution of the beam. In this case, wavelength is taken
to be a constant, Δλ ¼ 0.

ηθðΔθ; bÞ ¼
½η � G2�ðΔθmÞR
G2ðΔθm; bÞdΔθm

¼
R
ηðθcÞG2½ðΔθm − θcÞ; b�dθcR

G2ðΔθm; bÞdΔθm
. (25)

Although the general shape of the angular selectivity for
reflecting VBGs at normal incidence is the same as its spectral
selectivity shown in Fig. 8(a), splitting of angular selectivity
curves described above results in more complex interrela-
tions between angular selectivity of a grating, divergence
of a beam, and the resulting diffraction efficiency. Let us con-
sider a set of Bragg gratings similar to those which were
described above in Sec. 3.1. Gratings with thickness 10.8,
5.4, 1.08, and 0.54 mm each have a corresponding
HWFZ angular selectivity of 0.26, 0.53, 2.6, 5.2 mrad at
an incident Bragg angle in the medium of θ�m ¼ 10 deg.
A 1.1-mm-thick reflecting VBG has angular selectivity of
30.3, 22.8, 17.5, 5.1, and 2.6 mrad for corresponding
Bragg angles of 0, 0.5, 1, 5, and 10 deg. FWZ angular selec-
tivity for this grating is 30.3, 31.6, and 35.1 mrad for incident
Bragg angles of 0, 0.5, and 1.0 deg, respectively. Figure 9(a)
shows the results of numerical modeling of diffraction
efficiencyηθðΔθ; bÞ versus beam divergence b. One can
see a rather complex dependence of diffraction efficiency
on divergence of an incident beam for incident Bragg angles
between the normal and threshold angle θ0 [see Fig. 9(b)].
Despite the fact that angular selectivity decreases consider-
ably while the Bragg angle increases [Fig. 9(b)], diffraction
efficiency reaches its maximum at θ�m ¼ θ0 due to overlap-
ping of the positive and negative diffraction orders. Further
increasing of incident Bragg angle results in a weak decreas-
ing of this DE value down to a level of about 90%; it is in
good correlation with the data shown in Fig. 8(b). Moreover,
when an incident Bragg angle well exceeds the threshold
angle of θ0 ≈ 1°, the incident beam interacts with only
one diffraction order of the grating and, therefore, there is
no difference between angular and spectral parameters of
the grating as they are shown in Figs. 8(b) and 9(c).

It should be noticed again that DE is about 90% when
beam divergence b equals the angular selectivity of the grat-
ing (HWZ), and these results are similar to the those for spec-
tral characterization of reflecting VBGs as it was discussed
in Sec. 3.1. Decreasing of grating DE from 99% to 98%
occurs when the beam divergence b is equal to half the
angular selectivity of the grating (HWM) (2b ¼ δθm).
In comparison with diffraction of divergent beams on
transmitting gratings described in Ref. 3, this 1% loss

Fig. 9 Effect of divergence of incident beam on parametrs of 1.1-mm-
thick reflecting VBG. Diffraction efficiency of the grating for plane
monochromatic wave is 99%. (a) Dependence of diffraction efficiency
on beam divergence for different incident Bragg angles in medium θm ,
deg: 1 ¼ 0; 2 ¼ 0.5; 3 ¼ 1.0; 4 ¼ 5.0; 5 ¼ 10.0. HWFZ angular selec-
tivity of grating for corresponding incident Bragg angles, mrad:
1 ¼ 30.3, 2 ¼ 22.8, 3 ¼ 17.5, 4 ¼ 5.1, 5 ¼ 2.6; shown by dotted
arrows. (b) Dependence of angular selectivity (HWFZ) and diffraction
efficiency on incident Bragg angle in a medium. Divergence of a beam
is chosen equal to the grating selectivity at corresponding incident
Bragg angles. (c) Dependence of diffraction efficiency on beam diver-
gence for incident Bragg angle θ�m ¼ 10°. HWFZ angular selectivity of
gratings, mrad: 1 ¼ 0.26, 2 ¼ 0.53, 3 ¼ 2.6, 4 ¼ 5.2; shown by dotted
arrows. Grating thickness, mm: 1 ¼ 10.8, 2 ¼ 5.4, 3 ¼ 1.08, 4 ¼ 0.54.
Dotted line corresponds to diffraction efficiency for a beam with the
same beam divergence as the grating selectivity.
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requirement is much less restrictive for reflecting VBGs and
is absolutely the same as was described in Sec. 3.1 for inter-
relations between spectral parameters of the beam and
reflecting grating. Generally, reflecting VBGs are less
restrictive for achieving high DE in comparison with trans-
mitting VBGs, especially for divergent beams, but they have
narrower spectral selectivity which could considerably
restrict efficient Bragg diffraction of wide-spectrum beams.

If considering diffraction of divergent polychromatic
beams from reflecting VBGs, the total peak DE after the
Bragg grating is a product of ηλðΔλ ¼ 0;wÞ and ηθðΔθ ¼
0; bÞ which is calculated from Eqs. (23) and (25):

ηðw; bÞ ¼ ηλðΔλ ¼ 0;wÞηθðΔθ ¼ 0; bÞ. (26)

For instance, if a beam is characterized by both angular
divergence and spectral bandwidth which is equal to the
angular and spectral selectivity of a reflecting VBG, its dif-
fraction efficiency will be about only 80% compared with
99% DE for the same grating in plane monochromatic wave.

In some cases it is desirable to calculate diffraction effi-
ciency as a function of wavelength or angle while considering
effects of a divergent beam and laser bandwidth simulta-
neously. In this case, simply multiplying Eqs. (23) and (25)
will not be effective; instead, a double convolution must
be performed. Equation (27) gives the resulting expression.

ηθðΔθ;bÞ¼
½η�G2�ðΔλ;ΔθmÞR

G1ðΔλ;wÞdΔλ
R
G2ðΔθm;bÞdΔθm

¼
RR

ηðλc;θcÞG1½ðΔλ−λcÞ;w�G2½ðΔθm−θcÞ;b�dθcdλcR
G1ðΔλ;wÞdΔλ

R
G2ðΔθm;bÞdΔθm

. (27)

4 Comparison of Modeling and Measurements
When comparing experimental data with ideal VBGs
modeled above, there are usually multiple contributors that
deteriorate the diffraction efficiency. Effects of spectral
width and angular divergence of laser beams have been
discussed above. Effects of losses and nonuniformity of real
VBGs requires additional modeling that will be a subject of
future researches. However, it is clear that material
losses would decrease diffraction efficiency while inhomo-
geneity in theVBG,which result invariations inBraggwave-
length and diffraction efficiency across the aperture, will
contribute to the diffraction efficiency in much the same
was as does spectral or angular divergence of laser beams.

Figure 10(a) shows the measured and modeled spectra of
diffraction efficiency of a reflecting VBG at normal inci-
dence. This grating is 3.5 mm thick and has a spectral selec-
tivity HWFZ of 0.186 nm and angular selectivity of
3.67 mrad (full-angle). The two curves match well when
1.24 mrad beam divergence (full-angle) is assumed. To
remove any ambiguity about which effect we are measuring,
another experiment was performed in which the beam was
focused onto a very small spot on the grating. In this
way, we can reduce the effect from VBG inhomogeneity
to be negligible. Figure 10(b) shows the measured and
calculated data resulting from this experiment. The beam
divergence was measured to be approximately 23 mrad
(full-angle), and calculations made by using this beam diver-
gence match very well with the experimental data. In this
high-divergence case, one can see that the side lobes have
been completely washed out. This behavior was predicted
above for cases in which the divergence, spectral or angular,
exceeds the selectivity of the VBG. Spectrally divergent
beams behave similarly.

5 Conclusions
Mathematical modeling based on Kogelnik’s coupled wave
theory has been produced for diffraction of beams with a
wide range of spectral and angular parameters on reflecting
volume Bragg gratings. This model is particularly impor-
tant for most practical applications when spectral width
and angular divergence of diffracted beams are comparable
with spectral and angular selectivity of reflecting Bragg
gratings. Contrary to fiber Bragg gratings described in
numerous publications, free space VBGs allow for an addi-
tional design dimension where the interacting beams are not
confined to a waveguide. This additional dimension allows
for angular tuning of the Bragg resonance, and highly diver-
gent (nonguided) beam interaction. The proposed model
allows fast analytical calculation of angular and spectral
dependencies of diffraction efficiency for normal and
slanted gratings and could be used for the design of differ-
ent devices based on reflecting Bragg gratings as well
as testing tools for Bragg grating certification. This theore-
tical model was compared with and found very close to
experimental data observed in Bragg mirrors recorded in
photo-thermo-refractive (PTR) glass. This model can be
applied for all other thick Bragg gratings with sinusoidal
refractive index modulation recorded in different phase
photosensitive materials.

Fig. 10 Comparison of Modeling with experimental data. The VBG
used is 3.5 mm thick with a refractive index modulation of 420 ppm,
andhasaspectral selectivityof0.186nm(HWFZ)andanangularselec-
tivity of 3.67 mrad (full angle at 5.4 deg Bragg angle in glass).
(a) 1.24 mrad beam divergence; (b) 23 mrad beam divergence.
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