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1 Introduction

Over recent decades, numerous publications have appeared
on theoretical and experimental studying of volume Bragg
gratings �VBGs� recorded in various phase photosensitive
media and used in different configurations. A most widely
used basis for description of such gratings is the theory of
coupled waves1 developed by Kogelnik in 1969. Its results
were applied for further theoretical consideration2–5 and the
treatment of experimental results observed for VBGs
in photorefractive crystals,6–10 dichromated gelatin,11,12

photopolymers,13 and inorganic photosensitive glasses.14–16

There are several more approaches describing VBGs, e.g.,
rigorous coupled-wave analysis17 and the beam-
propagation method,18 which were compared with coupled-
wave theory in Refs. 19 and 20. However, Kogelnik’s
theory is still the most commonly used approach for the
volume grating modeling.

Today, VBGs are considered perfect spectral and/or an-
gular selectors with highly adjustable parameters. Angles of
incidence and diffraction, central wavelength, and spectral/
angular width can be properly chosen by varying the grat-
ing thickness, period of refractive index modulation, and
grating vector orientation. VBGs are used for spectral beam
combining of high-power laser beams with shifted
wavelengths,21–23 coupling elements in laser
resonators,24–27 beam deflectors, splitters, attenuators, etc.

One of the most promising materials for VBGs is a pho-
tothermorefractive �PTR� glass, which is a silicate glass
doped with silver, cerium, and fluorine.28 This glass was
successfully used for high-efficiency holographic elements
in high-power laser systems.16,29 Both transmitting and re-
flecting PTR VBGs were observed to exhibit diffraction
efficiency greater than 95% as well as perfect thermal, op-
tical, and mechanical stability in high-power beams. This is
f0091-3286/2006/$22.00 © 2006 SPIE
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hy our modeling is illustrated for those variations of grat-
ng parameters that are typical for PTR VBGs: the refrac-
ive index is in the range of 1.5 at wavelengths ranging
rom 0.4 to 2.7 �m, refractive index modulation is up to
000 ppm �10−3�, and grating thickness is from 0.2 to
0 mm.

The goal of this work is to reduce Kogelnik’s theory to
ractical formulas that enable practical modeling and de-
ign of diffractive optical elements based on VBGs. This
art of modeling considers diffraction of plane monochro-
atic, divergent, and polychromatic laser beams on uni-

orm sinusoidal lossless transmitting volume gratings and
ompares the model with experimental results in PTR
ragg gratings. Further parts will describe modeling of re-
ecting volume gratings �holographic mirrors� as well as

he application of both transmitting and reflecting grating
or spectral beam combining for different types of lasers.

Basic Definitions of Beam Propagation
and Diffraction in Bragg Gratings

et us consider a plate of a photosensitive material with a
olume phase grating. The surface of a plate that is crossed
y an incident beam is the front surface. Depending on
iffraction angle and orientation of a grating in the plate,
ne can distinguish several types of Bragg gratings. A grat-
ng is called a transmitting Bragg grating if the diffracted
eam crosses the back surface; reflecting, if the diffracted
eam crosses the front surface; and prismatic, if the dif-
racted beam crosses one of the side surfaces. Let us de-
cribe a plane transmitting Bragg grating recorded in the
olume of a photosensitive medium by sinusoidal modula-
ion of a refractive index and occupying the whole volume
f a plane-parallel plate, as shown in Fig. 1. This volume
rating could be entirely described by the following set of
arameters: an average refractive index of a medium nav at

ree-space wavelength �0; an amplitude of refractive index
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Ciapurin, Glebov, and Smirnov: Modeling of phase volume diffractive gratings, part 1…
modulation �n; the period � or spatial frequency f = I /�;
the grating thickness t; and the inclination angle � between
the normal to the front surface N f and grating vector KG,
which is directed toward a medium perpendicular to the
planes of a constant refractive index and has a module
�KG � =2� f . The lateral size of the grating should not be a
parameter while the grating occupies the whole volume of
the plate.

Determination of angles in Bragg gratings is similar to
those in classical geometrical optics. Figure 1 shows an
incident beam Ii approaching front surface of the plate at
the angle �i, then is reflected from the front surface at the
angle �r and refracted into the medium at the angle �im. An
incident angle �i is the angle between the normal to the
front surface N f directed toward the incident beam propa-
gation and the wave vector of an incident beam Ki. It is
positive if Ki is in a counterclockwise direction from the
N f, and can vary from −� /2 to +� /2. A reflection angle �r
has the same module as �i but an opposite sign. An incident
angle in medium has the same sign as the incident angle in
air and its value is determined according to the Snell’s law
sin �i=nav sin �im.

The angle of grating inclination �or tilt, or slant�, �, is
the angle between the normal to the front surface N f for an
incident beam and the grating vector KG. It is positive in
the counterclockwise direction and can vary from −� /2 to
+� /2. For example, Fig. 1 shows the negative inclination
of a grating ��0. A transmitting grating with inclination of
�= ± � /2 is called a symmetric or normal grating.

To describe Bragg diffraction in all types of volume

Fig. 1 Propagation of optical rays through a volume Bragg grating:
Nf and Nf,ex, normals to the front surface for incident �Ii� and re-
flected �Ir� beams; Nb, normal to the back surface for the transmitted
�It� and diffracted �Id� beams; Ki, Kim, and Kdm, wave vectors of
incident beam in air, and incident and diffracted beams in the me-
dium; KG grating vector; �, grating inclination; �i, �r, �im, �t, and �d,
angles of incidence, reflection, incidence in medium, transmission,
and diffraction; �m, Bragg angle; and �m

* , incident Bragg angle.
gratings regardless of type and inclination, let us introduce p
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n incident Bragg angle in a medium �m
* . This angle is

etermined as an angle between a grating vector KG and a
ave vector Kim of a refracted beam inside the medium,

nd it can vary from −� to +�. One can distinguish the
ollowing possible cases of Bragg diffraction depicted in
ig. 2. The positive orders of Bragg diffraction are for in-
ident Bragg angle ranged from 0 to +�, i.e., the counter-
lockwise direction of an incident beam from the grating
ector. The negative orders of Bragg diffraction are for in-
ident Bragg angle ranging from 0 to −�, i.e., the clock-
ise direction of an incident beam from grating vector. The

orward orders of Bragg diffraction are for a module of an
ncident Bragg angle less than � /2. The backward orders of
ragg diffraction are for a module of an incident Bragg
ngle more than � /2. Thus, depending on mutual orienta-
ion of grating and incident wave vectors, one can distin-
uish four Bragg orders, e.g., “plus forward” or “minus
ackward” etc.

Several examples of transmitting Bragg gratings re-
orded with different angles of inclination in a plane-
arallel photosensitive plate are shown in Fig. 3. Figures
�a� and 3�b� show positive inclination angles �	0. For a
ositive inclination angle � close to +� /2 and positive
ncident angle �i �Fig. 3�a��, an incident Bragg angle �m

* is
egative with module below � /2, and exit diffraction angle
d is negative. This is a case of negative forward Bragg
iffraction. When an incident angle �i is changed to the
egative side �Fig. 3�b��, an incident Bragg angle �m

* is
egative with module exceeding � /2, and diffracted exit
ngle �d is positive. Transmitting Bragg gratings with a
egative inclination ��0 are shown in Figs. 3�c� and 3�d�.

positive incident angle �i corresponds to a positive inci-
ent Bragg angle �m

* with module exceeding � /2 and a
egative exit diffraction angle �d �Fig. 3�d��. This is a posi-
ive backward order of diffraction. A negative incident
ngle �i corresponds to a positive incident Bragg angle �m

*

ith module below � /2 and a positive exit diffraction
ngle �d �Fig. 3�c��. This is a positive forward order of
iffraction. Note that excitation of Bragg diffraction of a
ransmitting grating with inclinations not far from � /2 by
canning the incident angle of the beam produces switching
etween forward and backward orders, but not between

ig. 2 Possible orders of Bragg diffraction inside medium: Ii and Id,
ncident and diffracted beams; Ki, wave vector of incident beam; KG,
rating vector; �m, Bragg angle; �m

* , incident Bragg angle.
lus and minus orders. Switching between positive and
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Ciapurin, Glebov, and Smirnov: Modeling of phase volume diffractive gratings, part 1…
negative Bragg orders in a transmitting grating can be ob-
served by changing of illumination from the front surface
to the back. For example, Fig. 1 shows a positive backward
order of Bragg diffraction for a grating with negative incli-
nation.

The traditionally used �beginning from its crystallogra-
phy applications� conventional Bragg angle in the media �m
has been determined as a positive angle not exceeding 90
deg between the plane of a constant refractive index and a
direction of the beam propagation. As one can see from
Figs. 1 and 2, the relationship between a Bragg angle and
an incident Bragg angle is sin �m= �cos �m

* �. Note that �m
does not describe the difference between forward and back-
ward orders of diffraction, which are important for practical
modeling of transmitting gratings.

3 Diffraction of Plane Monochromatic Waves
on a Transmitting Bragg Grating

For volume gratings, a wave vector of a diffracted beam is
Kdm=Kim+KG for backward orders and Kdm=Kim−KG for
forward orders. Therefore, contrary to the surface grating,
diffraction of a beam with a certain wavelength occurs for
only one certain angle, which depends on grating spatial
frequency according to Bragg’s condition:

�cos �m
* � =

�0f

2nav
. �1�

In accordance with Kogelnik’s theory,1 a solution of the
scalar wave equation for transmitting VBG gives the fol-
lowing formula for diffraction efficiency �DE�:


 =
sin2��2 + �2�1/2

1 + �2/�2 . �2�

Here phase incursion � is the parameter that determines the
maximum diffraction efficiency of VBG �grating strength�
when the Bragg condition is satisfied, while dephasing pa-

Fig. 3 Possible orders of Bragg diffraction for tr
rameter � describes deviation from the Bragg condition by d

Optical Engineering 015802-3
etuning from either �m
* or �0. Phase incursion in Bragg

ondition is written in Ref. 1 as

=
�t�n

�0F�

, �3�

here parameter F� is an inclination factor:

� = �− cos�� − �m
* �cos�� + �m

* ��1/2. �4�

or normal transmitting gratings with �= ± � /2, the ex-
ression for the inclination factor is simplified and becomes

�/2 = sin �m
* = �1 − � �0f

2nav
�2	1/2

. �5�

he inclination factor describes an additional optical path
f incident and diffracted beams in a medium resulting
rom deviation of propagation from the normal to the sur-
ace. Note that this factor is a function of independent
ragg grating parameters because �m

* must satisfy Bragg
ondition, Eq. �1�.

According to Eq. �2�, the DE of a transmitting grating in
ragg condition ��=0� is a periodic function of phase in-
ursion � and reaches 100% when

= �/2 + j�, where j = 0,1,2, . . . . �6�

ubstitution of this phase incursion in Eq. �3� at j=0 and
onsidering a Bragg angle value from Eq. �1� gives a mini-
um thickness of grating t0, which provides a 100% DE

or a given refractive index modulation �n:

0 =
�0F�

2�n
. �7�

he dependence of the minimum thickness t0 on resonant
avelength �0 for normal grating is shown in Fig. 4. For

ow spatial frequencies, when propagation of incident and

ting gratings with different angles of inclination.
iffracted beams are not far from normal to the front sur-
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Ciapurin, Glebov, and Smirnov: Modeling of phase volume diffractive gratings, part 1…
face, the minimum thickness increases almost linearly with
increasing wavelength. This thickness ranges from 0.2 to
1.5 mm for wavelengths varied from 400 to 3000 nm.
However, increasing the spatial frequency of grating results
in increasing the optical path of incident and diffracted
beams in a plate and, therefore, leads to decreasing the
inclination factor and corresponding deviation from the lin-
ear dependence. For gratings with a high spatial frequency,
radiation with a wavelength exceeding some value cannot
be diffracted because the required incident angle in a me-
dium exceeds the angle of total internal reflection.

Dephasing parameter � takes into account small angular
deviations 
�m from an incident Bragg angle �m

* and/or
small deviations 
� from central wavelength �0:

� =
�ft

cos�� − �m
* � − �f�0/nav�cos �

�
�m sin �m
* −

f

2nav

�� .

�8�

For normal transmitting grating ��= � /2�, this expression
is simplified and can be written as

��/2 = − �ft�
�m −
f

2navF�/2

�� . �9�

Because both spectral and angular parts of such detuning
from the Bragg condition are equivalent to producing the
same value of dephasing parameter �, interrelation between
them could be obtained by equating the terms in parenthe-
ses in Eq. �9� and substituting the Bragg condition �Eq.
�1��:


�m


�
=

f

2navF�/2
. �10�

Equation �9� is a universal interrelation between spectral
and angular selectivity of a VBG that enables easy calcu-
lation of one of them from the given �or measured� other.

The angular selectivity of a VBG for a resonant wave-
length �0 could be determined by substituting Eqs. �3� and

Fig. 4 Dependence of minimum thickness of a Bragg grating that
produces 100% diffraction efficiency at different spatial frequencies
on resonant wavelength. Refractive index modulation is 1000 ppm.
�8� into Eq. �2� at 
�=0. The general formula for angular �

Optical Engineering 015802-4
electivity is rather cumbersome, but a simplified formula
or normal transmitting grating shows all features of this
ype of gratings:

�
�m� =
sin2
�t���n/�0F�/2�2 + �f
�m�2�1/2�

1 + ��0fF�/2
�m/�n�2 . �11�

he dependence of diffraction efficiency on detuning from
he Bragg angle is shown in Fig. 5�a�. Curve 1 corresponds
o 2-mm-thick VBG with a 1086-mm−1 spatial frequency
nd a 250-ppm refractive index modulation, which provides
00% diffraction efficiency at 1085 nm. One can see a
ell-known central maximum and a number of sidelobes
ith gradually decreasing magnitude. Curve 2 shows a de-

rease of DE resulting from a decrease of refractive index
odulation down to 125 ppm at the same grating thickness

nd spatial frequency; this decreases DE at the central
aximum down to 50%, but positions of minima and
axima of the sidelobes practically are not changed. Curve
shows a decrease of DE resulting from a decrease of the

hickness down to 1 mm for the same �n=250 ppm; this
lso provides DE of 50%, but it causes dramatic widening
f angular selectivity, when the first minimum moves to the
osition of the second minimum for 2-mm-thick gratings.

Note that Eq. �2� requires the following criterion to
qualize the DE to zero:

�2 + �2�1/2 = j�, where j = 1,2, . . . ,n, . . . . �12�

et us determine angular selectivity inside the VBG me-
ium at the HWFZ level, ��m

HWFZ, as the angle between the
entral maximum and the first minimum on the DE curve.
or VBGs with 100% diffraction efficiency �= � /2. Com-
arison of Eqs. �9� at 
�=0 and �12� at j=1 gives the
ollowing expression for the HWFZ angular selectivity:

�m
HWFZ =

�3

2ft0



0.87

ft0
. �13�

ote that the HWFZ angular selectivity ��m
HWFZ is slightly

ower than the widely used grating parameter of FWHM
ngular selectivity, which for a 100% efficient grating
ould be easily estimated as ��m

FWHM
1/ ft0.
Figure 5�b� shows that the angular selectivity of a trans-

itting VBG with parameters typical for PTR glass could
e varied from more than 100 mrad for thin low-frequency
ratings to less than 0.1 mrad for thick high-frequency
nes. Note that the value of refractive index modulation �n
roviding 100% DE depends on spatial frequency of grat-
ng because different incident angles and should be opti-
ized in accordance with Eq. �7�. The angular selectivity of

rating in air, ��i
HWFZ, can be easily calculated from Eq.

13� by the use of differential form of Snell’s law:

�i
HWFZ = ��m

HWFZ�4nav
2 − �0

2f2

4 − �0
2f2 �1/2

. �14�

he angular selectivity in air is wider than that in a me-
ium. Their ratio increases from the nav at low spatial fre-
uencies to about 2.4 at spatial frequency of 1600 mm−1
see Fig. 6�.
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Ciapurin, Glebov, and Smirnov: Modeling of phase volume diffractive gratings, part 1…
In the same manner as already described above for an-
gular selectivity, the ��HWFZ spectral selectivity is deter-
mined as a distance between the central maximum and the
first zero in spectral distribution of the DE, which could be

Fig. 5 Selectivity of transmitting Bragg gratings for �0=1085 nm,
nav=1.4867: �a� dependence of diffraction efficiency on deviation
from Bragg angle and wavelength with grating thickness in millime-
ters: 2.0 for curves 1 and 2 and 1.0 for curve 3; refractive index
modulation in parts per million: 250 for curves 1 and 3 and 125 for
curve 2; spatial frequency 1086 mm−1; �b� dependence of angular
selectivity �half width at first zero �HWFZ�� on spatial frequency for
optimal refractive index modulation with grating thickness in millime-
ters: curve 1, 0.5; curve 2, 2.0; curve 3, 5.0; and curve 4, 10; and �c�
dependence of spectral selectivity �HWFZ� on spatial frequency for
optimal refractive index modulation with grating thickness in millime-
ters: curve 1, 0.5; curve 2, 2.0; curve 3, 5.0; and curve 4,10.
expressed by substitution of Eqs. �3� and �8� into Eq. �2� at f
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�m=0. In the case of a normal transmitting grating, this
xpression is simplified by the use of Eq. �9�:

�
�� =

sin2� �t

F�/2
���n/�0�2 + � f2
�/2nav�2�1/2�

1 + � f2�0
�/2nav�n�2 . �15�

pectral selectivity �Eq. �15�� has the same structure as
ngular selectivity �Eq. �11�� because of their linear inter-
elationship �Eq. �10��. For the grating parameters depicted
n Fig. 5�a�, this ratio is 
� /
��500 mm−1. In addition of
howing the angular selectivity of 2- and 1-mm-thick trans-
itting VBGs, Fig. 5�a� shows spectral selectivity of the

ame gratings, which is represented by the upper horizontal
xis of this figure. One can see that all features of spectral
electivity are the same as those already discussed for an-
ular selectivity.

For normal transmitting gratings with 100% DE, ��HWFZ

ould be derived by substitution of Eq. �13� into Eq. �10�:

�HWFZ =
�3navF�/2

f2t0
. �16�

igure 5�c� shows dependence of spectral selectivity on
patial frequency for different grating thicknesses. The
WFZ spectral selectivity could be easy varied from values
elow 0.1 to more than 100 nm by proper choice of grating
arameters.

There is an additional mismatching factor from the
ragg condition for beams with different wavelengths due

o spectral dispersion of a refractive index in a photosensi-
ive medium. This means that two beams with the same
ncident and output angles and different wavelengths have
ifferent angles of refraction inside the medium, and this
eads to the difference in incident Bragg angles. Let us
rite down the Bragg condition �Eq. �1��, where the refrac-

ive index is supposed to depend on wavelength, in a dif-

ig. 6 Ratio of angular selectivity �HWFZ� of normal transmitting
BG in air to that inside a medium for �0=1085 nm and nav
1.4867.
erential form:
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d�m

d�
= � 1

�0
−

dnav/d�

nav
	cot �m

* . �17�

In this case, substitution of Eq. �1� into Eq. �17� gives a
relative shift of Bragg angle in the medium resulted from
material’s dispersion:


�m,� − 
�m


�m
=

�0

nav
dnav/d� . �18�

Estimation of this value for PTR glass, which is classified
as crown-type optical glass having dnav/d� ranged30 from
−10 to −100 ppm/nm in the spectral range from near IR to
near UV. Using dispersion curve for PTR glass presented in
Ref. 30, Eq. �18� gives relative impact of material disper-
sion on Bragg angle in the medium presented in Fig. 7. One
can see that amendment for the Bragg angle does not ex-
ceed a few of percent. This means that impact of the mate-
rial dispersion of a photosensitive medium should be care-
fully considered for beams with extremely low divergence.
For example, by taking into account the material dispersion
of PTR glass in the spectral region near 1 �m, the VBG
with an incident Bragg angle of 60 deg would be detuned
for 40 �rad by shifting of the beam wavelength for 10 nm.
This value corresponds to diffraction-limited angular diver-
gence of a beam with 30-mm-aperture and results in com-
pletely detuning of high-aperture beam from the Bragg con-
dition.

4 Diffraction of Gaussian Beams
on a Transmitting Bragg Grating

4.1 Divergent Monochromatic Beams

In this section we present the results of Bragg diffraction
modeling of a monochromatic beam that has a divergence
that could be approximated by a Gaussian function. If the
direction of the beam propagation matches the Bragg con-
dition, the normalized function of the beam intensity in the

Fig. 7 Effect of material dispersion on the Bragg angle inside a
grating medium. The angular dispersion factor is a partial derivative
of the Bragg angle over the wavelength resulting from material dis-
persion of refractive index normalized to absolute value of Bragg
angle. The refractive index and material dispersion are determined
conform to Ref. 30.
angular space could be written as t

Optical Engineering 015802-6
1��,b� = exp�− 2�� − �m

b
�2	 . �19�

or a diffraction-limited beam with diameter D at the level
f e−2 �half width at e−2 of the maximum �HWe−2M�� at
entral wavelength �0, its divergence b could be deter-
ined as

=
2�0

�D
. �20�

o determine the DE of a Bragg grating for such a diver-
ent beam, convolution in the angular space of the func-
ions given by Eqs. �15� and �19� should be applied:

��b� =
� 
���G1��,b� d�

� G1��,b� d�

. �21�

fter substitution of the numerical value of a Gaussian-
unction integral, Eq. �21� could be written as

��b� =� 2

�

1

b
� 
���G1��,b� d� . �22�

Figure 8�a� shows angular selectivity of the grating with
�m

HWFZ=0.4 mrad and 100% DE for a plane monochro-
atic wave at 1085 nm for four beams with different diver-

ences b. While the beam divergence is much less than the
rating angular selectivity �curve 1 corresponds to b
0.04 mrad�, there is a negligible decrease of diffraction
fficiency compare to that for planar wave, and the curve
inima reach zero values as it appears for the planar wave

see Fig. 5�a��. However, if the beam divergence becomes
omparable with the grating selectivity, dramatic decreas-
ng of maximal DE occurs �curves 2 to 4�. When diver-
ence and selectivity values are equal, b=��m

HWFZ, maxi-
um DE is only about 60%. Also, sidelobes are flattened
hile the divergence increases, local minima of angular

electivity begins to differ from zero significantly, and at
���m

HWFZ=0.4 mrad the selectivity curve has no local
inima at all.
Figure 8�b� shows the dependence of diffraction effi-

iency on the beam divergence. Four gratings with thick-
esses of 20 and 2.0 mm and a spatial frequency of
57 mm−1 as well as with thickness 2.0 and 0.2 mm and a
patial frequency 1086 mm−1 have respective values of
WFZ angular selectivity of 0.12, 1.2, 0.4, and 4 mrad in

ccordance with Eq. �13�. It was found that diffraction of a
ivergent beam causes a decrease of DE to 99% when the
eam divergence b becomes 8 times less than the grating
WFZ angular selectivity ��m

HWFZ, i.e., losses are less than
% when 8b���m

HWFZ. Further increases of the beam di-
ergence b �e.g., by decreasing of the beam diameter for
iffraction-limited beams� results in dramatic decreases of
he DE value. When the beam divergence is equal to the
rating angular selectivity ��m

HWFZ, DE decreases almost

wice �to 58%�.
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.2 Polychromatic Planar Waves
et us consider the Bragg diffraction of polychromatic
eams with a Gaussian shape of the spectral distribution.
he modeling of such diffraction is performed similarly as
as done for divergent beams in Sec. 4.1:

2��,w� = exp�− 2�� − �0

w
�2	 . �23�

he parameter w is the HWe−2M spectral width, and �0 is a
entral wavelength of a beam. Diffraction efficiency of
ransmitting VBG for such beams could be calculated from
onvolution of the DE for a monochromatic wave deter-
ined by Eq. �14� with the Gaussian spectral distribution

escribed by Eq. �23�. This gives us the adjusted value of
iffraction efficiency 
��w�:

��w� =
� 
���G2��,w� d�

� G2��,w� d�

. �24�

aking into account the numerical value of a Gaussian-
unction integral, Eq. �24� could be rewritten similar to Eq.
22�:

��w� =� 2

�

1

w
� 
���G2��,w� d� . �25�

quation �25� enables us to calculate the DE of planar poly-
hromatic beams on transmitting VBG. These results are
ery similar to results described in Sec. 4.1 for the diffrac-
ion of divergent beams, and therefore are depicted in the
ame Fig. 8�a� in the same way as was done for Fig. 5�a�.
ne can see that the beam spectral width is twice fewer

han the grating spectral selectivity �curve 2�, DE losses
bout 15% in the main maximum and gains almost 6% in
ach of the first minima. When the beam width is equal to
he grating selectivity or exceeds it �w���HWFZ�, sidelobes
isappear and DE becomes less than 60%.

Figure 8�c� shows the calculated dependence of DE on
eam spectral width w for four gratings with the parameters
escribed in Sec. 4.1. One can see that the grating DE is
nly about 60% when the beam spectral width w is equal to
he grating selectivity ��HWFZ. The DE for narrow-spectral-
ine beams is the same as for a monochromatic wave, and it
ecreases to 99% when beam spectral width becomes ap-
roximately 8 times fewer than the grating HWFZ spectral
electivity, i.e., when ��HWFZ=8w.

.3 Divergent Polychromatic Beams: A General
Case

n the case where a real beam is both divergent and spec-
rally widened, the grating diffraction efficiency is a prod-
ct of 
��w� and 
��b� calculated in accordance with Eqs.
22� and �25�:

�w,b� = 
��w�
��b� . �26�

hus, both misaligning factors, such as beam divergence
Fig. 8 Selectivity of transmitting VBG for divergent polychromatic
beams with central wavelength at 1085 nm: �a� dependence of DE
on detuning from Bragg condition, for a monochromatic wave, DE is
100%; incident beam divergence HWe−2M in milliradians: curve 1,
0.04; curve 2, 0.2; curve 3, 0.4; and curve 4, 0.8; grating angular
selectivity is 0.4 mrad; beam HWe−2M spectral width in nanometers:
curve 1, 0.1; curve 2, 0.5; curve 3, 1.0; and curve 4, 2.0; grating
spectral selectivity is 1.0 nm; �C� dependence of grating DE on the
beam divergence for angular selectivity �HWFZ� of grating in millira-
dians: curve 1, 0.12; curve 2, 0.4; curve 3, 1.2; and curve 4, 4.0;
shown by dotted arrows; and �c� dependence of grating DE on the
beam spectral width with spectral selectivity �HWFZ� of grating in
nanometers: curve 1, 0.1; curve 2, 1.0; and curve 3, 10; shown by
dotted arrows, where the dotted line corresponds to DE for a beam
nd spectral bandwidth, affect the DE of transmitting
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VBGs. Substitution of Eqs. �22� and �25� into Eq. �26�
enables modeling real beams with countable spectral width
and angular divergence. For instance, if a beam has angular
divergence and spectral width equal to the angular diver-
gence and spectral selectivity of a grating with 100% DE
for plane monochromatic wave, its DE will be only about
35%.

5 Comparison of the Model and Experimental
Results

As noted, PTR-based VBGs typically exhibit refractive in-
dex modulation up to 1000 ppm, which is enough to secure
nearly 100% efficient gratings at thicknesses less than
1 mm at wavelengths from the visible to near-IR regions.
To prove the model experimentally, we recorded a fairly
typical 1.23-mm-thick transmitting VBG with a spatial fre-
quency of 425 mm−1 and a refractive index modulation of
420 ppm by exposure of PTR glass to radiation from a
He-Cd laser at 325 nm and subsequent thermal develop-
ment at 520°C for 2 h. A comparative test of this grating
by collimated He-Ne laser beams at 543 and 633 nm
proved that these parameters secured calculated 100% DE
for a planar monochromatic wave at 1085 nm. A 100-W cw
single-transverse-mode Yb-doped fiber laser �IPG Photon-
ics Corp., model YLR-100� with a central wavelength of
1085 nm was used for testing. This laser had the collimated
output radiation of a 5-mm-diam Gaussian beam. It was
found that this laser had a near-diffraction-limited diver-
gence of 0.23 mrad in the whole studied power region,
while the spectral width at the HWe−2M level increased
from 2.7 to 4.7 nm, when the output power rose from 15 to
100 W.

The dependence of the DE of a PTR Bragg grating on
the power of the laser at 1085 nm is shown in Fig. 9. One
can see decreases of efficiency while power increases. Be-
cause PTR Bragg gratings have no thermally induced ef-
fects at power density levels up to 100 kW/cm2 �see Refs.
16 and 31�, this effect was caused by changing the laser

22

Fig. 9 Dependence of a PTR Bragg grating DE on the power of
radiation with central wavelength at 1085 nm: triangles, experimen-
tal results; curve 1, DE calculation for monochromatic beam with
0.2-mrad-divergence; curve 2, DE calculation for planar wave with a
spectral width equal to the experimental values; and curve 3, the
product of curves 1 and 2.
beam parameters at different levels of emitting power.

Optical Engineering 015802-8
ased on the theoretical modeling results already de-
cribed, let us evaluate how spectral width and divergence
f the beam affect diffraction efficiency of this particular
rating. The theoretical DE of this grating is expected to be
qual to 100% for a planar monochromatic wave. The dif-
raction of the laser beam with 0.23-mrad divergence on a
rating with an angular selectivity of 1.6 mrad �HWFZ�
esults in a decrease of DE to 98.6% �curve 1�. For a planar
olychromatic wave with a spectral width that increases
inearly with increasing power, the calculated DE depen-
ence on power is shown as curve 2 in Fig. 9. Curve 3, as
result of multiplication of curves 1 and 2, presents the

alculated DE for a polychromatic divergent beam that
hould drop from 93.5 to 87% for beams with spectral
idths of 2.7 and 4.7 nm, respectively. The corresponding

xperimental data are 93 and 87% �triangles in Fig. 9�.
omparison of calculated data with experimental results

hows very good correspondence. Thus, the proposed
odel is able to describe the diffraction of polychromatic

ivergent beams on real PTR Bragg gratings. Another con-
equence of this coincidence is that the experimental PTR
ragg grating is very close to a sinusoidal uniform grating,
s it was supposed in the model.

Note that this modeling can be applied to other photo-
ensitive materials with high optical homogeneity that al-
ow recording of sinusoidal refractive index modulation.

Conclusions
e presented the results of mathematical modeling based

n Kogelnik’s coupled wave theory for the diffraction of
eams with a wide range of spectral and angular parameters
n transmitting VBGs. This consideration is rather impor-
ant for most practical applications when the spectral width
nd angular divergence of diffracted beams are far enough
rom the monochromatic/planar-wave model. The proposed
odel enables fast analytical calculation of angular and

pectral dependencies of DE for normal and slanted grat-
ngs and could be used to design of devices based on a
ransmitting Bragg grating as well as testing tools for Bragg
rating certification. The requirements for the parameters of
ratings and laser beams for lossless Bragg diffraction were
ormulated. This theoretical model was compared with and
ound to be very close to experimental data observed for
igh-power Yb-fiber laser diffracting on a transmitting PTR
ragg grating. This model can be applied for all other thick
ragg gratings with sinusoidal refractive index modulation

ecorded in different phase photosensitive materials.
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